SERVICIO DE RESPIROMETRÍA

Estudio para calcular distintos grados de toxicidad referida a la actividad del fango activo de dos muestras problema

Instrumentos

Los instrumentos y compuestos utilizados son:

• Sistema de Respirometría de laboratorio tipo BM-Advance

- Medida directa del oxígeno disuelto desde un sensor de oxígeno sin mantenimiento
- Sin restricciones de oxigenación ni tiempo en la ejecución de cualquiera de los ensayos.
- Control completo del funcionamiento y resultados por medio de un potente software cargado en el ordenador del sistema
- · Actualización automática del software en curso desde Internet
- Capacidad para la programación de las condiciones del ensayo y su posible modificación durante su ejecución
- Medidas automáticas: OUR, SOUR, CO, DQOb, U (tasa de utilización de sustrato) y q (U específica)
- Último, mínimo, máximo y media móvil de cada medida siempre que se desee
- Presentación de todos los resultados seleccionados durante la ejecución del ensayo, en cualquier momento, de forma tabular o gráfica.
- Opción para la apertura de varios ensayos almacenados y comparar los resultados de forma gráfica de los parámetros seleccionados, por superposición o por distintos modos de presentación de pantallas
- Control automático de la temperatura integrado en la misma consola.
- · Monitorización y control automático del pH
- Zoom de cualquier zona seleccionada en el Respirograma
- Las medidas de los respirómetros BM y aplicaciones derivadas (parámetro cinéticos y operativos) pueden utilizarse en los programas de simulación y modelación
- · Opción para utilizar un reactor especialmente diseñado para contener los portadores (biomass carriers) de procesos tipo MBBR
- Analizador compacto de muy bajo mantenimiento y fácil manejo

Objetivo del estudio

Se solicita la determinación de una toxicidad del 50% respecto a un fango activo de referencia (fango genuino del proceso de depuración de la planta) de dos compuestos denominados SMX y SMXL

El objetivo consiste en realizar dos ensayos de respirometría orientados a conocer la relación [Volumen muestra] / [Volumen Fango] y Concentración de cada una de las muestras problemas hasta alcanzar un grado de Toxicidad del 50%

Fecha de realización del Servicio: 18 de Septiembre del 2015

Preparación de muestras SMX y SMXL

Puesto que el proceso actual tampona el pH durante la fase de homogeneización y teniendo en cuenta la elevada alcalinidad de las muestras, se lleva a cabo un tamponamiento (con HCl) en cada una de ellas para que el pH se sitúe aproximadamente en el nivel 7.

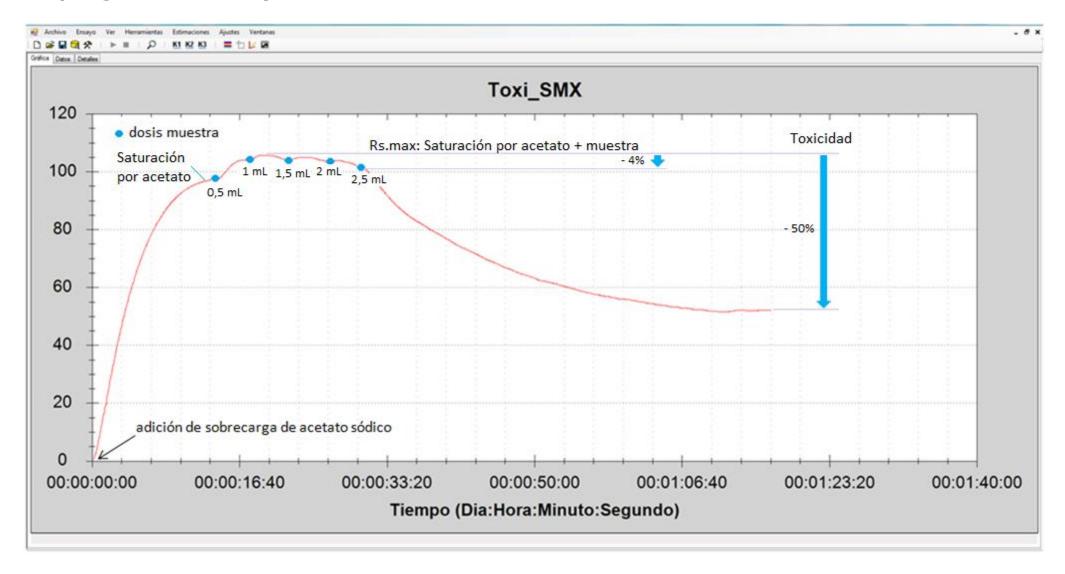
SMX

Para 100 mL de muestra se añaden 80 mL de tampón para pasarlo a pH neutro. 1 mL de SMX equivale a 1,27 mg.

SMXL

Para 100 mL de muestra se añaden 63 mL de tampón para pasarlo a pH neutro. 1 mL de SMXL equivale a 1,22 mg.

Preparación del fango activo


El fango activo del reactor se somete a una aireación continuada durante un tiempo >24 horas para pasarlo a un estado de respiración endógena, con total ausencia de sustrato pendiente de degradar,

Descripción del ensayo por acumulación progresiva de volumen de muestra

El procedimiento se basa en la realización de un solo ensayo de respirometría dinámica R por cada una de las muestras con la siguiente secuencia:

- 1. Comprobación de fango en respiración endógena Determinación de la línea-base
- 2. Adición de una sobredosis de acetato sódico
- 3. Creación de un nivel alto de referencia sobre una base de tasa de respiración máxima (Rs.max)
- 4. Adición progresiva de dosis de la solución de muestra equivalente
- 5. Análisis de las variaciones de la Rs vs la Rs.max de referencia
- 6. Cálculo de niveles de toxicidad del volumen acumulado de muestra / en 1 litro de fango + solución añadida, hasta alcanzar una toxicidad del 50% (EC50)

Respirograma del ensayo de la muestra SMX

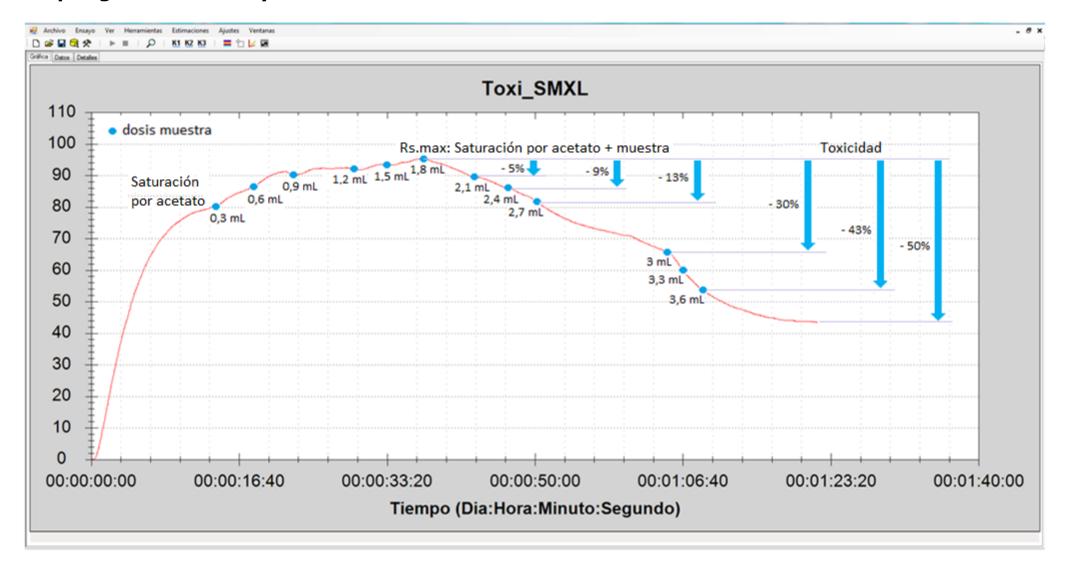
Resumen de resultados toxicidad SMX

Volumen acumulado de SMXL (mL) en el fango activo	[Volumen SMXL] (mL) / [Volumen Fango] (mL)	mg/L (mg SMXL/L fango)	Toxicidad %
2 (3,6 mL con tampón)	2 / 1003,6	2,53	4
2,5 (4,5 mL con tampón)	2,5 / 1004,5	3,16	50

Cálculo de las cantidades límites de SMX en el reactor biológico

Dosis prevista en el reactor → 175000 kg/año ≈ 480 kg / d

Volumen del reactor = 900 m^3


Ratio por el que empieza a sentirse la toxicidad de forma sensible \rightarrow 2 mg/1000 mL (ver gráfica) = 0,002 mg/mL = 0,002 kg/m³

Kg de SMX para empezar a ser tóxico en el reactor de la planta → 0,002 * 900 = 1,8 kg

Ratio para EC50 \rightarrow 3,16 mg/1000 mL = 0,00316 mg/mL = 0,00316 kg/m³

Kg de SMX para llegar al 50% de toxicidad en el reactor de la planta \rightarrow 0,00316 * 900 = 2,84 kg

Respirograma del ensayo de la muestra SMX

Resumen de resultados toxicidad SMXL

Volumen acumulado de SMXL (mL) en el fango activo	[Volumen SMXL] (mL) / [Volumen Fango] (mL)	mg/L (mg SMXL/L fango)	Toxicidad %
1,8	1,8 / 1003	2,19	5
(3 mL con tampón)			
2,1	2,1 / 1003,5	2,56	9
(3,5 mL con tampón)			
2,4	2,4 / 1004	2,91	13
(4 mL con tampón)			
2,7	2,7 / 1004,5	3,28	30
(4,5 mL con tampón)			
3	3 / 1005	3,64	43
(5 mL con tampón)			
3,6	3,6 / 1006	4,36	50
(6 mL con tampón)			

Cálculo de las cantidades límites de SMXL en el reactor biológico

Dosis prevista en el reactor → 175000 kg/año ≈ 480 kg / d

Volumen del reactor = 900 m^3

Ratio por el que empieza a sentirse la toxicidad de forma sensible \rightarrow 1,8 mg/1000 mL (ver gráfica) = 0,0018 mg/mL = 0,0018 kg/m³

Kg de SMXL para empezar a ser tóxico en el reactor de la planta → 0,00158 * 900 = 1,42 kg

Ratio para EC50 \rightarrow 4,36 mg/1000 mL = 0,00436 mg/mL = 0,00436 kg/m³

Kg de SMXL para llegar al 50% de toxicidad en el reactor de la planta→ 0,00436 * 900 = 3,92 kg

SURCIS, S.L.

Fecha: 22, Septiembre 2015