RESPIROMETRY SERVICE

Respirometry study of two different wastewater samples on COD fractioning & biodegradability for a specific activated sludge process and nitrification

Preliminary

This service was made according to customer order points and indications from Hydrolab Microbiológica (Surcis collaborator)

The client wanted Surcis to carry out a study about COD fractioning and nitrification.

For this study the client has provided to Surcis the following:

- Process type: Activated sludge Extended aeration
- 2 wastewater samples: the first one is a punctual sample from an irregular wastewater influent (sample 1) and the second one is coming from one-day composite wastewater from the normal influent to the activated sludge process (sample 2)
- Activated sludge from the biological reactor.
- Some wastewater data in the process.

Date of the study: weeks 17 (April) and 18 (May) - 2012

Note: As usual, in the complete report presented to the client, Hydrolab Microniológica could also include a part of the microscopic bio-indication.

Instruments

The instruments utilized in this study:

• Respirometry system: Model BM-Advance – from SURCIS.

BM-Advance

BM software

• Lab. Photometer analyzer: Model DINKO D-500 - from DINKO Instruments

Analytical data for this study

Wastewater sample 1

Parameter	Value (mg/l)
COD	814
Р	16,5
NT	113

Wastewater sample 2

Parameter	Value (mg/l)
COD	422
Р	10.5
NT	90

Actual ASP

Parameter	Value (mg/l)
BOD _{avg}	300
MLSS	2000
MLVSS	1800
N-NH _{4.avg}	60

Sodium acetate solution

Paremeter	Value (mg/l)
COD _{ac}	300

In this study, the client did not provide the data corresponding to flows, biological reactor volume, global HRT and available HRT for nitrification. For that reason, there are not calculations related with those data and only some references when necessary.

Summary of the study results

Activated sludge

Biologic	Parameter	Result	Habitual range	Assessment	Comments
Heterotrophic yield coefficient	Y _{H.DQO} (O ₂ /COD) Y _{H.VSS} (VSS/COD)	0,57 0,38	0,5 - 0,7 0.3 - 0,5	Normal	Rather low.

Specific biodegradability of the wastewater samples to the activated sludge

Wastewater sample 1	Parameter	Result	Habitual	Assessment	Comments
			range		
Total COD total	COD (mg/l)	814			
Biodegradable COD	bCOD (mg/l)	368			
% bCOD in COD	b (%)	<mark>45</mark>	65 - 99	Very low	There is a problem in the biodegradability of the
					wastewater sample 1.
bCOD removal rate	u _b (mg COD/l.h)	18			
Time for bCOD removal	T _{bCOD} (h)	20.5			
Readily biodegradable COD	rbCOD (mg/l)	336			Very close to bCOD
% rbCOD in COD	rb (%)	41	15 - 50	Normal	It is in the higher range
% lbCOD en COD	lb (%)	4	10 - 30	Very low	Practically there is not any slowly biodegradable COD
% iCOD en COD	i (%)	<mark>55</mark>	5 - 25	Very high	The high inert fraction will provoke a low COD removal
					efficiency in the biological process

Wastewater sample 2	Parameter	Result	Habitual	Assessment	Comments
			range		
Total COD total	COD (mg/l)	422			
Biodegradable COD	bCOD (mg/l)	352			
% bCOD in COD	b (%)	<mark>83</mark>	65 - 99	Normal	
bCOD removal rate	u _b (mg COD/l.h)	9,14			
Specific bCOD removal rate	q _b (COD/VSS.d)	0,12	>F/M		
Readily biodegradable COD	rbCOD (mg/l)	269			
% rbCOD in COD	rb (%)	<mark>63</mark>	15 - 50	<mark>High</mark>	High % rb has a direct influence in the available HRT for nitrification.
rbCOD removal rate	u _{rb} (mg DQO/l.h)	8,43			
Time for rbCOD removal	T _{bCOD} (h)	17.5			Influence in the available HRT for nitrification
% lbCOD en COD	lb (%)	20	10 - 30	Normal	
% iCOD en COD	i (%)	17	5 - 25	Normal	

Nitrification

Mixed-liquor + amonium	Parameter	Result	Habitual	Assessment	Comments
			range		
Maximum nitrification rate	AUR (mg N-NH4/l.h)	4,19	2 - 8	Normal	
Specific nitrification rate	SAUR (N-NH4/gVSS.d)	5,86			
Time for a complete nitrification	T _N (h)	14,32			
Estimated autotrophic biomass	X_A (mg/l)	126			
concentration					
% X _A in MLVSS	F _N (%)	7	5 - 20	Normal	Coherent with the actual C/N ratio
Minimum sladge age for nitrification	SRT_{N} (d)	10	5 - 30	Normal	

Nutrients ratio

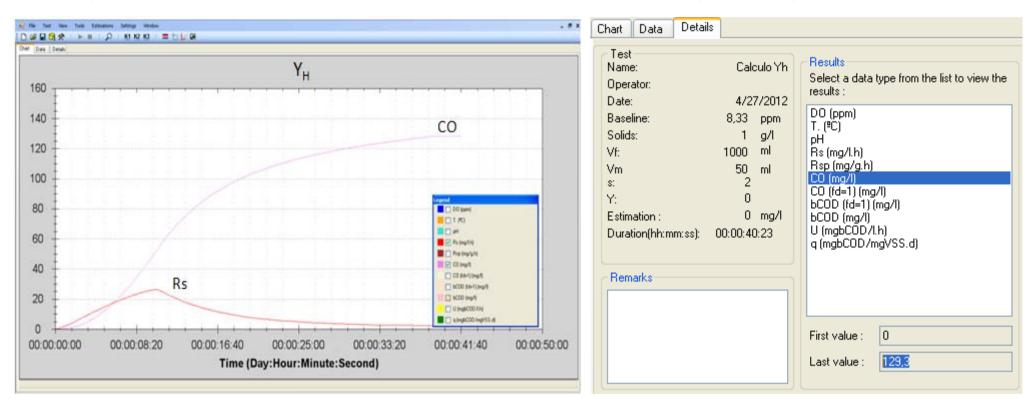
WW sample 1	Parameter	Result	Habitual	Assessment	Comments
			range		
rbCOD	C (mg/l)	336			
Nitrogen	N (mg/l)	113			
Fosfore	P (mg/l)	16,5			
Nutrients ratio	C/N/P	100/33/5	100/5/1	High	Higher than normal

WW sample 2	Parameter	Result		Assessment	Comments
			range		
rbCOD	C (mg/l)	269			
Nitrogen	N (mg/l)	90			
Fosfore	P (mg/l)	10,5			
Nutrients ratio	C/N/P	100/33/4	100/5/1	High	Higher than normal

Operational parameters

Activated sludge process	Parameter	Result	Habitual range	Assessment	Comments
Minimum sludge age	SRT (d)	17	5 - 30	Normal	
BOD loading rate	F/M (d ⁻¹)	<mark>0.15</mark>	0.05 - 0.15	Normal high	Depending of the conditions, it might be too high

Respirometry


1. Heterotrophic yield coefficient (Y_H)

1. Heterotrophic yield coefficient (Y_H)

The determination of the Y_H allows knowing the growing biomass capacity and it is directly related with its health.

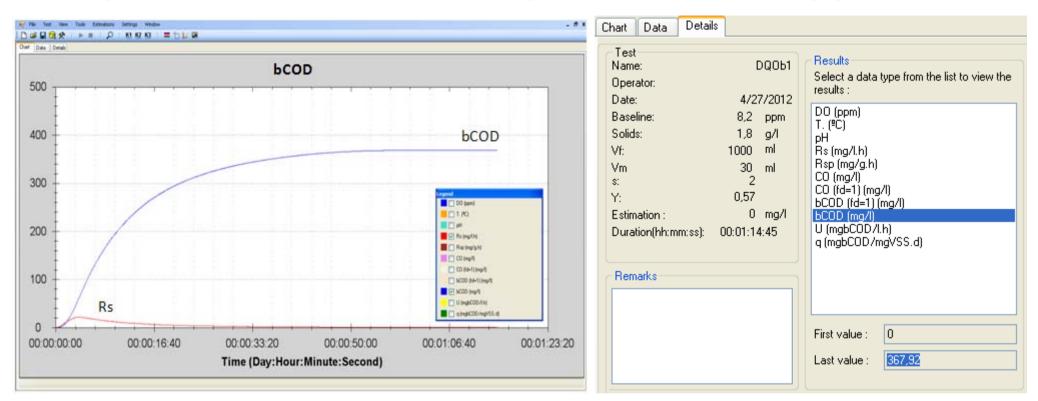
By other side, it is also utilized in the biodegradable COD fractions determination.

In this study, to the Y_H determination we have made use of a sodium acetate solution of known COD (CODac = 300) as standard

 $Y_{H.DQO}$ (mg COD{bact.}/mg COD) = 1 - OC / DQO_{ac}

 $Y_{H} = 1 - 129 / 300 = 0.57$

 $Y_{H.VSS}$ (mg VSS{bact.}/mg COD)= $Y_{H.DQO}$ / 1.48 = 0.57 / 1.48 = 0.38


Analysis

The values of 0.57 and 0.38 are rather low, representing a possible slow rate on heterotrophic biomass growing.

2. COD fractions characterization in wastewater sample 1

2.1. Biodegradable COD (bCOD) and its percentage (b) in total COD

We carry out this determination by means a test in dynamic R mode. On this mode we make use of small amount of wastewater sample in endogenous activated sludge, and the software automatically calculates the corresponding bCOD vale by applying the corresponding algorithm for extrapolation.

bCOD = 368 mg/l

b = 100 * (bCOD / COD) = 100 * (368 / 814) = 45 %

Analysis

The value of 45% represents a very low percentage of bCOD in COD and, therefore a very low biodegradability specifically referred to this actual activated sludge process. By other side, this low biodegradability is giving pass to a very high refractory non-degradable COD.

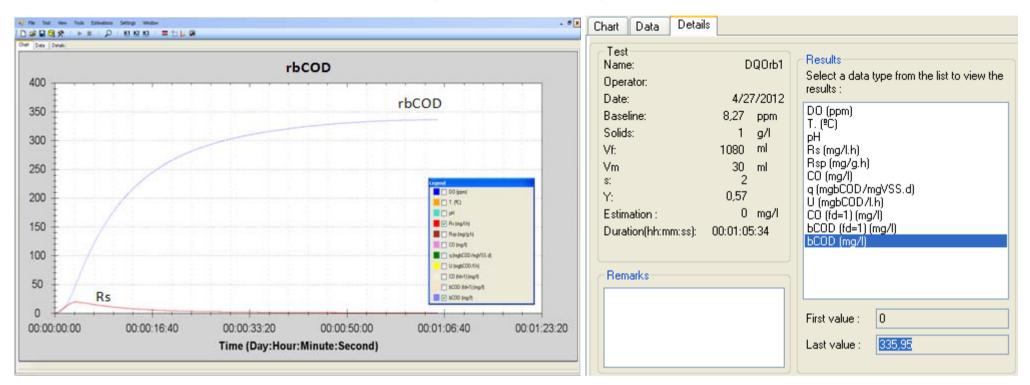
2.1.1. bCOD removal rate (U_b)

Chart Data Details				
Test DQOb1 Operator: Date: 4/27/2012 Baseline: 8,2 ppm Solids: 1,8 g/l Vf: 1000 ml Vm 30 ml s: 2 Y: 0,57 Estimation : 0 mg/l Duration(hh:mm:ss): 00:01:14:45	Results Select a data type from the list to view the results : D0 (ppm) T. (*C) pH Rs (mg/l.h) Rsp (mg/g.h) C0 (mg/l) C0 (fd=1) (mg/l) bCOD (fd=1) (mg/l) bCOD (mg/l) U (mgbC0D/l.h) q (mgbC0D/l.h)			
Remarks	First value : 0 Last value : 8,6 Maximum : 34,68 Average : 17,98			

 u_b (average) = 18 mg DQOb/(l.h)

 $T_{b} = 368 / 18 \approx 20.5 h$

 T_b (h): Average time to remove a bCOD of 368 mg/l


Analysis

The time to remove the bCOD will be good or not depending of the actual HRT (*) available for it.

(*) HRT data was not provided to SURCIS in this study

2.2. Readily biodegradable COD and its percentage (rb) in total COD

This determination is carried out on the same way of the biodegradable COD but making use of a soluble wastewater sample (filtered to 0.45 micron)

rbCOD = 336 mg/l

rb = 100 * (rbCOD / COD) = 100 * (336 / 814) = 41 %

Analysis

The value of 41% represents a relatively high percentage of the rbCOD fraction in the total COD.

Because of the very close value to the bCOD, we could affirm that all the the biodegradable fraction in wastewater sample 1 is practically readily biodegradable.

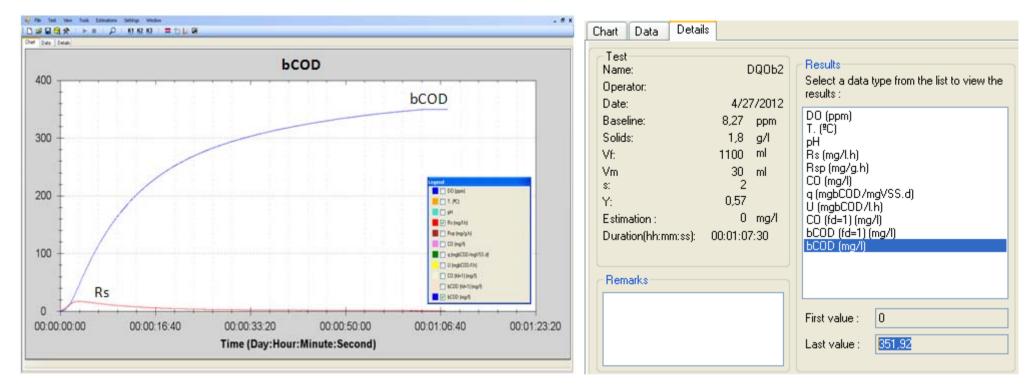
2.3. Percentage of slowly biodegradable COD (sb) in total COD

Sb = b - rb = 45 - 41 = 4 %

Analysis

The percentage of sbCOD in COD is insignificant and, for practical purposes, we could consider bCOD \approx rbCOD

2.4. Percentage of inert COD (i) in total COD


i = 100 - b = 100 - 45 = 55 %

Analysis

The percentage of refractory or inert COD in total COD is extremely high and this fact will bring the logical consequence of a very poor COD removal of the wastewater 1 in the activated sludge process.

3. COD fractions characterization in wastewater sample 2

3.1. Biodegradable COD (bCOD) and its percentage (b) in total COD

bCOD = 352 mg/l

b = 100 * (bCOD / COD) = 100 * (352 / 422) = 83 %

Analysis

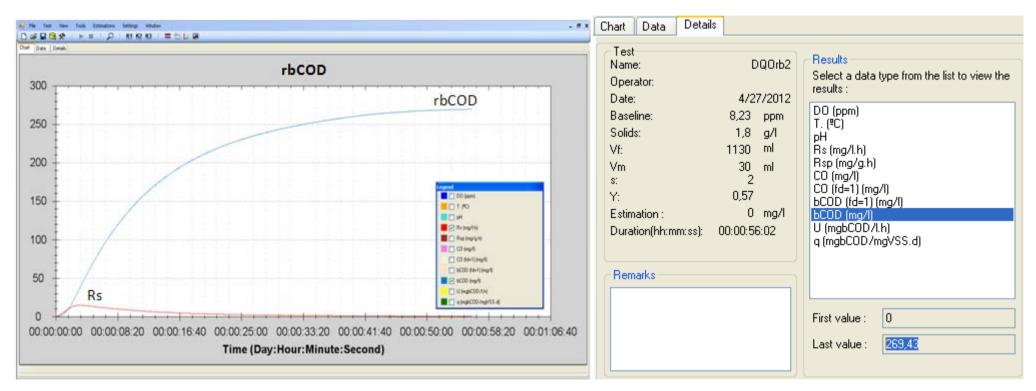
The value of 83 % represents a normal biodegradability referred to the actual activated sludge process.

3.1.1. bCOD removal rate (U_b)

Chart Data Details		
Vm s: Y: Estimation :	DQOb2 4/27/2012 8,27 ppm 1,8 g/l 1100 ml 30 ml 2 0,57 0 mg/l 0:01:07:30	Results Select a data type from the list to view the results : D0 (ppm) T. (°C) pH Rs (mg/l.h) Rsp (mg/g.h) C0 (mg/l) q (mgbC0D/l.h) C0 (fd=1) (mg/l) bC0D (fd=1) (mg/l) bC0D (mg/l)
		First value : 0 Last value : 9,14 Minimum : 0 Maximum : 29,9 Average : 16,96

 U_b (average) \approx 17 mg DQOb/(l.h)

 $T_b = bCOD / U_b = 352 / 17 = 20,7 h$


Tb (h): Average time to remove the bCOD

Analysis

The time to remove the bCOD (T_b) will be good or not depending of the actual HRT (*) available for it.

(*) HRT data was not provided to SURCIS in this study

3.2. Readily biodegradable COD and its percentage (rb) in total COD

This determination is carried out on the same way of the biodegradable COD but making use of a soluble wastewater sample (filtered to 0.45 micron)

DQOrb = 269 mg/l

DQOrb / DQO = 269 / 422 = 0,63

Porcentaje de DQOrb en DQO: b = 63 %

Análisis del resultado

El valor de 0,63 de la relación DQOrb / DQO es muy alta.

3.2.1. rbCOD removal rate (U_{rb})

Chart Data Details			
Solids: Vf: Vm s: Y: Estimation :	DQOrb2 4/27/2012 8,23 ppm 1,8 g/l 1130 ml 30 ml 2 0,57 0 mg/l 0:00:56:02	Results Select a data results : DO (ppm) T. ([®] C) pH Rs (mg/l.h) Rsp (mg/g.h) CO (mg/l) CO (fd=1) (mg bCOD (fd=1) bCOD (mg/l) U (mgbCOD/r)/) (mg/) .h)
		First value : Last value : Maximum : Average :	0 8,43 25,39 15,31

 U_{rb} (average) \approx 15.31 mg DQOb/(l.h)

 $T_{rb} = bCOD / Ur_b = 269 / 15.31 = 17.5 h$

Analysis

The time to remove the rbCOD (T_{rb}) will be good or not depending of the actual HRT (*) available for it.

(*) HRT data was not provided to SURCIS in this study

3.3. Percentage of slowly biodegradable COD (sb) in total COD

sb = b - rb = 83 - 63 = 20 %

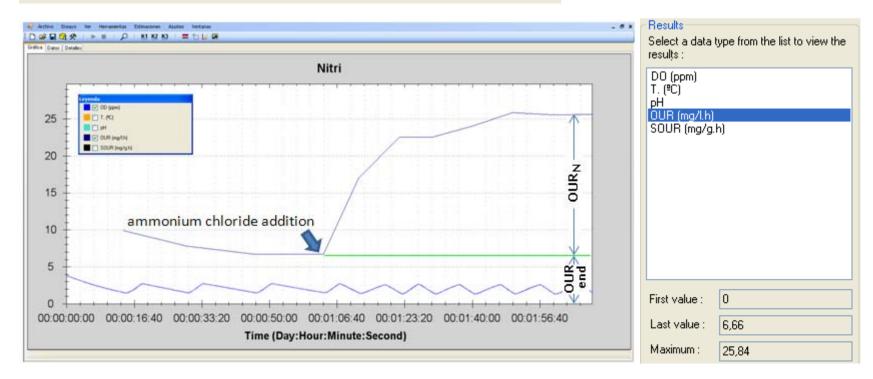
Analysis

The percentage of sbCOD in COD is normal.

3.4. Percentage of inert COD (i) in total COD

i = 100 - b = 100 - 83 = 17 %

Analysis


The percentage of iCOD in COD is normal (a bit high)

4. Nitrification

4.1. Maximum ammonium uptake rate (AUR) & Nitrification timen (T_N)

For the nitrification test we are making use of ammonium chloride with equivalent values of N-NH4 concentration, oxygen (1.5 - 2.5 ppm), temperature (20°C) and pH (7) to the actual process in a cyclic mode respirometry test.

Test type: R OUR Cyclic OUR Derator Filename: Data interv	Nitri C:\Documents and Settings\Propietario\ Search val: 2 \$ s.	Board control settings	20,0 🗢 QU,0 🗢 QU,0	PH Control 7,0 Hysteresis:	0.0 🗘
	Solids: 1,80 g/L CD: 126.05 1 ': 0.670 CD DO Low : 1,5 1 Readings below zero DO High: 2,5 2	Peristaltic pump	2 🗢	Aeration	55 🗢

 $OUR_N = OUR - OUR_{end} = 25.84 - 6.66 = 19.18 \text{ mg/l.h}$

AUR = $OUR_N / 4.57 = 19.18 / 4.57 = 4.19 \text{ mg N-NH}_4/(l.h)$

SAUR = 24 * AUR / VSS = 24 * 4.19 / 1.8 = 55.86 mg N-NH₄/(g VSS.d)

 $T_N = S_N / AUR = 60 / 4.19 = 14.32 h$

 $\begin{array}{l} {\sf OUR}_{\sf N} \mbox{ (mg/l.h): Oxygen uptake rate due to nitrification } \\ {\sf AUR} \mbox{ (mg N-NH_4/l.h): Nitrification rate } \\ {\sf SAUR} \mbox{ mg N-NH_4/g VSS.d): Specific nitrification rate } \\ {\sf T}_{\sf N} \mbox{ (h): Time that process needs to completely nitrify the ammonium $S_{\sf N}$ } \\ {\sf S}_{\sf N} \mbox{ (N-NH_4/l): Mean concentration og ammonium nitrogen $\approx 60 $mg N-NH4/l } \end{array}$

Nitrification capacity

 N_{C} (N-NH₄/I) = AUR * TRH_N = 4.19 * TRH_N

 N_{C} (N-NH₄/I): Maximum ammonium concentration that the process is able to remove TRH_N (h): Available hydraulic residence time for nitrification (this data was not provided to SURCIS)

4.2. Autotrophic biomass concentration (X_A)

 $F_{N} = Y_{A.VSS} * S_{N} / (Y_{H.VSS} * S_{S} + Y_{A.VSS} * S_{N})$

 $\begin{array}{l} S_{N} \mbox{ (mg/L): Actual eliminated ammonium-nitrogen in nitrification.} \\ S_{S} \mbox{ (mg/L): Readily biodegradable COD (DQOrb)} \\ Y_{A} \approx 0.13 \mbox{ (by default - for normal nitrification activity)} \end{array}$

 $F_N = 0.13 * 60 / (0.38 * 269 + 0.13 * 60) = 0.07$

 $X_A = F_N * X_V = 0.07 * 1800 = 126 \text{ mg/l}$

 $X_A = 126 \text{ mg/l}$

Source: Activated sludge treatment of industrial wastewater - W.W. Eckenfelder, J.L. Musterman - 1995

Analysis

We can assess the X_A value by comparing the result with a guide table of F_N values from different BOD/N ratios

BOD/N	0.5	1	2	3	4	5	6	7	8	9
F _N	0.35	0.21	0.12	0.083	0.064	0.054	0.043	0.037	0.033	0.029

Source: Metcalf & Eddy. 1995

Current BOD/N = $4 \rightarrow 0.064$ (table)

The 0.07 (>0.064) is coherent with the corresponding BOD/N ratio

5. Operational parameters

5.1. Minimum sludge age for nitrification (SRT)

SRT = $1 / [(0.13 * AUR * 24 / X_A) - b_A] = 1 / [(0.13 * 4.19 * 24 / 126) - 0.04] = 17 d$

$TRC_N = 17 d$

Temp	Death & Decay Rate b _A (days ⁻¹)
10°C	0.02
15°C	0.03
20°C	0.04
25°C	0.05

5.2. F/M

F/M should be calculated in full coherence with SRT.

 $F/M = 1 / (SRT * Y_{H.VSS}) = 1 / (17 * 0.38) = 0.15$

F/M = 0.15

Analysis

SRT is in range but F/M is the higher limit (range: 0.01 - 0.15) for a normal nitrification. The reason of this relatively high F/M is mainly coming from the low Y_{H.VSS}. That means, if the process could increase the Y_H value the F/M could decrease into more normal values for nitrification.

6. Conclusions of the study

Conclusions

Activated sludge

The activity is normal. However the yield coefficient is slightly low, the biomass growing might be slow.

This relatively low value is also affecting the COD fractions and F/M.

Discarding the causes of a lack of nutrients, low temperature or sporadic toxicity, the cause of this low Y_H is unknown and it might be worth to carry out a specific study to find out the reasons of it - it exist some probabilities because of too low MLSS concentration for this type of process -

Wastewater sample 1

In this simple, the % of biodegradable COD (bCOD) in total COD is 45%. This value is very low compared with the habitual range and, for that reason, we can qualify its biodegradability as very low.

This relatively very low bCOD brings with it a logical very high (55 %) non-biodegradable inert COD (iCOD) in the total COD.

By other side, its bCOD removal rate gives a total removal time of 20.5 hours that, in principle, it seems to be rather high.

Wastewater sample 2

In this simple, the % of biodegradable COD (bCOD) in total COD is 83%. This value is very normal compared with the habitual range and, for that reason, we can qualify its biodegradability for this specific activated sludge as normal.

However, the % of soluble readily biodegradable COD (rbCOD) is very high; and this high percentage, depending of the process and their actual conditions, can bring the possible foaming generation and some influence in the actual available hydraulic residence time for nitrification.

Nitrification

In principle, the nitrification activity is normal.

In this study we had not the HRT available for nitrification in the process. We are however advising that, when there are not ideal conditions (DO, pH, Temperature), the high rbCOD value (wastewater sample 2) can create some lack of residence time for a complete nitrification performance. For that reason, it will acquire special importance to get the process within the best possible conditions; and work with a SRT higher than the minimum value (17 days) here calculated.

Operational parameters

Maximum F/M and SRT are keeping some coherence. However F/M might be in the higher limit (0.15) for a normal nitrification; and this is mainly due to the low Y_H value.

In case that the high F/M could cause some problems in the nitrification performance, the advice should be to increase the MLSS concentration; thus, the F/M will be reduced.

SURCIS, S.L.